Foundation Developer Reference

Table of Contents

FOUNAAION OVETVIEW......eiiiiiiiiiiiieie ettt ettt ettt e b e st e bt e et esbeesabeesbbeeabeeesanbeeeens 2
WAL TEDOCS. ...eieeiiiiieeectee ettt e et e e e et e e e e sate e e e esasaeeeessssaeaesesssaaeeesnssaaaaaaaeeeenanns 2
Deployment of FOUNATION.ccuiiiiiiiiiiiiiieieeccee e 3
ReIAted APPIICALIONS. ...eeiiiiieiiieeiiieeiteeeite ettt et e et e et ee et eeeabeesaaeesseeesnsaeesnsseesnsaeesnseeenansenes 3
Storing Nagios Data in FOUNAAtION.........ccocuiiiiiiiiiiiieiie ettt aaaee e s 4

Foundation Architecture and Data FIOW.........ccooouiiiiiiiiiiiiciee ettt e e e e e e e e e e e e e e 5
ATCRITECTUTE. ... eitiiee ettt et e e ettt e e e et e e e e saabeee e e aaaeeeeenssaeeesasssaeeeeanssssseeeeeeaaaaaaaaaeseeeenns 5
DAt FIOW.....eiiiiitieeee ettt ettt s bttt s e et esbe e et sat e et e s e ne e 6

COMPONENTE DIELALLS.eieiiiiieiiieeeiee ettt ettt e st e st eesabteesabeeesabeessabeessbeesbbeesssaeeeens 7
LTS (<) PP PPPPPPPPRR 7
FOUNAAtION LISTENETcccitiieeiiieeiieeeiteeeiee et ee ettt e ettt et e e et e e et eesaaeeesnteeesaeeenssaeensaaesnsssneaeesennsnees 7
AAPLETS ..ottt ettt h ettt h ettt b ettt eeh e e et e nee e e e e e e e 7

Configuring FOUNAATION.eiiiiiiiiiieiitie ettt ettt e et e s et e e e bt e e e bt eesbbeesnabbreeeeeas 8
Description of the Foundation SYStEIM...........ccciiiiiiieiiieiiie ettt eree e sree e svee e 8
Deployment of FOUNAAtION...........iiiiiiiiiiieiiieecieeeie ettt et e st e e s s e e e e e eenenees 8
Foundation ConfigUIATION.cocutiiiiiriiiiiieieeeeeteee ettt ettt e st sane e neesane e 9
Logging and Log OULPUL........coceoriiiiiiriieieeeeetete ettt e s e e e 9
Running FOUNAAtION.ciiiiiiiiieiiie ettt ettt et e sttt e st e e e e et eeeeeeseaseaees 9

Data Integration APPIOACHES.eieruiieiiieeiiie et eriee et ettt e e e st e e st e e beeesateeesbeessaeesnsaeesssaeesnnnseees 11
BEfOre YOU STATT....coouiiiiiiiiiie ettt ettt e st e e e ettt e e e e e anbeaeees 11
SUPPOTTEA AQAPLETS.....ceeueteeeiiiieiiieeet ettt ettt e s e e st e e st e e et e s sabeeeenteesaeeeee 11
Single TranSaCtion MESSAZES.veeeureeerrieerrierriiteriteesriteeetteestteesteeesteessaseesssseesssseessseessseeesseesns 12
User definable tranSaction MESSAZES.eevuveeerrterrieerriteeiieesriteessiteessiteesiteesiteeessessanseeeeesssnsnseees 13
The Feeder and Generic AdAPLETS........ueiuuierieeeriieerieeeiteeeireeeireesteeesseeessseeessseesnsseesssseesseeesssees 13
CUSLOIMN PrOPEITIES. .. eeeuviieeiiieeiieeeiie ettt ettt e et e et e et eeetaeesstaeesnsaeesnsaeensseeensseeesseeenssaneeeens 13

ReECOMMENAATIONS.....cciiiiiiieieiiiieeeceee et et e e et e e e s treeeeeeeeeesesssnnnnnsssnnnnnes 14

Configuring Data FEEAETS.......ccueeiuiiiiiiiiiieeeceeee ettt st e e 15
N TETS 1 B 5 1o J O TSP P TP U PO PP PPOTRPPPPTROPPPRINt 15
Setup and CONFIGUIATION.cc.uiiiiiiieeiieeetie ettt ettt st e st e e ateeesteeeebeessaeessnnsssaeeeeennns 15
| S ALY (53 1a 1 TP PP 15

FEEAING DAteoiiiiiiiiiiiiee ettt ettt e e 17

Configuring CONSOIIAATION.cc..eiiriiiiiiiie ittt sie e et e e st e e esabeeesabeeeabeessseesnsseesnsseeeeeens 19
HOW Tt WOTKS ...ttt ettt ettt et e e s e e s 19
Default ConSOIAAION.ccuuiieiiieeiiie ettt et e et e et eeeaaeeeaaeeebaeesnsaeesnssseeeesennnnssees 19
Disable CONSOIAALION.uiiiiiieeiiieeiee e eetee et ee e et eeestteeerateeetaeeesaeeassaeessseeessseeansseeensseeannes 20

EXAMIPLE.....coiiiiiiiiee ettt ettt ettt st et ne s 20
HOSt Status ATIDULES. ...c...eiiiiiiiiiieeieee et 21
SErvice Status ALLITDULES.coviiriiiiiieriieeicete ettt sttt e et e e e eeeees 22

GroundWork Open Source, Inc.; Copyright 2008
Page 1

Foundation Developer Reference

AL 1 | & (o T A0 N Y= a4 (Lo AN (<5 SRR 23
Event - Host or Service NOGTICALION.uvvveeeieiiiiiiiiirieeieeeeeeeeiiiieeeeeeeeeeeeirreeeeeeeeeeeeesaeaeaannns 23

HOSE GIOUPS. ..ttt et et e st e s bt e st e e saba e e ebbeesnbaeesabaeenateeas 23
DEVICE. ...ttt ettt e e ettt e e e e e e et e e e e e e e e ————aeeee e e e e —ar—raaeeeeeaaraaan 24
IMONIEOTING SEIVET......ceiuiieeiiieiieeeeteeeeteeerteeesteeestreeestreesseeessseeeasseesssseesnsseesssssaaeseennssseeeens 24

WED SEIVICE AP s sssssnsssnsssssssnsssnnssnsnsnsnnnnssesesnnnns 24
Foundation WED SEIVICE.cooeoiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e e e e eeenenaneeeeennes 24
AL B) ISR UUPURRRTTRONt 24
Foundation Web Service MOEL...........oeeiiiiiiiiiiiiiiieiiiee e 24
Foundation EVENt WS.... ... e 25
Foundation Common WED SEIVICE..........uuuueiiiiieieieieieeeieeeeeeeeeeeeeeeeeeeeeeeeee e e e 25

=

Foundation Overview

What It Does

Welcome to the GroundWork Foundation Developer toolkit. Programmers can use the PHP, Perl, or
Web Service API or third party products to:

+ Build custom displays of real-time monitoring information

+ Build custom reports from historical monitoring information

+ Monitor additional devices or systems by feeding monitoring information into the system

+ Consolidate information from disparate systems into a single view

- Integrate heterogeneous systems by using GroundWork Foundation as an intermediary system

The Developer toolkit includes documentation that describes the available APIs. The toolkit is based on
a framework developed by GroundWork Open Source, called GroundWork Foundation 2.0
(Foundation). The intent of Foundation is to provide a data model that integrates the components of an
IT infrastructure requiring monitoring. Flexible methods of integrating data into the data store are
provided allowing different tools and applications and databases to feed data into Foundation.
Foundation will normalize the data so it can be retrieved in a consistent manner. Foundation then
provides various APIs to allow the normalized data to be retrieved. The Foundation package includes
Nagios, as the main monitoring system, integrated with Foundation and a set of applications which use
the Foundation APIs to present real-time views and reports.

The Web Service interface is a new addition to the existing Foundation Framework. The previous API
components have been re-packaged to use the Web Service Interface and have not been replaced. The
following diagram shows the different Foundation components and their interaction:

GroundWork Open Source, Inc.; Copyright 2008
Page 2

Foundation Developer Reference

Figure: Foundation Components

Foundation Components

Java API PHP APl Porl API

| Web Service Interface |

1 .

| Object Relationship Bridge |

Adaptor Managor

i

Port Listener

Persistence

Topic
Server

MNaglos Adaplar
SNMP Adaplor

JWX Adapler

5
§
2
5
&
L&)

Log Adapter

Foundation JMS

I

Feeders

Deployment of Foundation

Foundation is packaged and deployed as a web application (.war) into the Jetty Servlet container. Jetty
is an open-source, standards-based, full-featured lightweight servlet container implemented entirely in
Java. In addition to the Foundation application the GroundWork implementation includes the following
web applications:

GroundWork Report Server and Eclipse BIRT Viewer that allow to run and manage Eclipse
BIRT reprts created with Eclipse BIRT Report Designer.

GroundWork JMS. A full featured persistence and topic server based on the Open Source
project JORAM.

The professional version of GroundWork Monitor includes the Console implemented as a Web
application.

Related Applications

The Monarch tool is a web application that is used to configure the Nagios system. It stores the Nagios
configuration data in its own database. At this point in time, the Monarch database is separate from the
Foundation database. On a monarch commit the new configuration is synchronized with Foundation.

GroundWork Open Source, Inc.; Copyright 2008
Page 3

Foundation Developer Reference

Storing Nagios Data in Foundation

Since the Nagios monitoring system is integrated in this package, any information gathered by a Nagios
plugin can be integrated into the system. Nagios Feeders (in Open Source) or the Event Broker in
Professional take the information from the Nagios system and inserts it into the Foundation database.
The data objects contained in Foundation map closely to the Nagios objects and include:

Table: Data Objects

This includes Hosts as members.

This typically represents a monitoring entity that in Nagios usually maps to
physical devices. A Host entry contains one or more Service Checks.

This typically represents a Nagios Service Check for a specific Host. A Host-
Service combination is unique in the monitoring instance.

The following type of information can be retrieved:
Table: Data Objects

This represents the current status and attributes of Host objects.
This represents the current status and attributes of Service objects.

These are typically timestamped messages that are generated by a
monitoring system or managed device. The following Nagios Events are
stored in the LogMessage table.

Events generated when a Host changes state.

Events generated when a notification occurs based on a Host Alert event.

Events generated when a service changes state.

Events generated when a notification occurs based on a Service Alert event.

Existing Host or Service Alerts are updated when a user acknowledges

GroundWork Open Source, Inc.; Copyright 2008
Page 4

Foundation Developer Reference

APIs built on top of the Foundation framework allow this information to be retrieved. The APIs allow
programs to query by object and data type. Separate APIs are available for Java, PHP, and Perl
programs. In addition to the provided samples, the Foundation status views (Overview, NetView,
Troubleview, and FilterView) are built using the PHP Foundation API.

Foundation Architecture and Data Flow

Architecture

This chapter is intended as a developer's guide for integrating monitoring data into the Foundation Data
Store. The Foundation framework consists of five main components:

1. Feeders These are scripts or programs which generate a data set that is sent to the Foundation
Listener. The protocol is a simple XML stream.

2. Foundation Listener This is a port or Java Message Service (JMS) Listener which receives the
XML streams from various Feeders and dispatches them to data normalizers, called Adapters.

3. Foundation Adapters These Adapters are programs within the Foundation framework that
apply rules and data normalization to incoming data. Each Adapter is application specific (e.g.
NagiosEvent, SNMP or Syslog) and is easily added and managed with the framework.

4. Foundation Persistence Service This is a Relational Persistence layer which runs on the top of
a database or a database cluster.

5. Foundation API This is documented API's for PHP and Perl, used to retrieve data from the data
store.

Figure: Component Interaction

GroundWork Open Source, Inc.; Copyright 2008
Page 5

Foundation Developer Reference

Foundation Components

Client Applications

Web Service Interface |
[T l 4@
Object Relationship Bridge |
i |
Adapter Managor |
- El15((z]||5/|2
> o Persistence Port Listener § 3 § E g
- | a g
Foundation JMS | :_% 3 K 3

Feeders

Data Flow

The data flow of messages is unidirectional, since the Foundation Framework doesn't reply to the
incoming XML streams.

Figure: Data Flow

[Feeder H Listensr H Adapters H Data Store]

GroundWork Open Source, Inc.; Copyright 2008
Page 6

Foundation Developer Reference

Component Details

Feeder

In order to integrate data into the Foundation framework, the data generated by the source application
(e.g. Nagios or Java Management Extensions (JMX) Service) needs to be read and sent as an XML
stream to one of the listeners. This functionality is provided by Feeders. A Feeder can be written in any
language; for example, Nagios Feeders are written in Perl. The XML output protocol is simple:

<FeederName AttributeName='AttributeValue' AttributeName='AttributeValue' ... />

The FeederName matches with the Adapter name, and the Attributes are just a list of name value pairs.
For example, the Nagios Event Feeder XML has the following format:

<NAGIOSLOG MonitorServer='localhost' Severity="HIGH' TextMessage="Failed to check Host' />

The Feeder could include the logic for normalizing the data, but this is discouraged. The best approach
is to have a simple and generic Feeder that reads and forwards the data to the Listener. Normalization
functions are best performed by Adapters.

The simple format of an XML element represents as well one transaction across the system. For a large
load this is expensive and affects the overall message throughput since transaction carry some overhead.

The recent version of Foundation includes support for more complex messages where multiple
messages can be bundled into one transaction. More details about the different adapters can be found in
the "Data Integration approaches section".

Foundation Listener

The Listener is a simple service, either listening on port 4913 or on a JMS topic. The incoming XML
message is analyzed and forwarded to the appropriate Adapter as defined in the XML element (e.g., the
Adapter that matches FeederName).

Adapters

Adapters are data normalizers that apply normalization or simplification rules to the incoming XML
message. For example, an Adapter could calculate the average temperature for a data feed of 10 sensors
in a server room, and insert the calculated value into the data store.

An Adapter can be used to validate incoming data for completeness. It can and should be used to reject
incomplete or faulty data before it gets rejected by the persistence layer, which would affect system
performance.

Adapters are written in Java and compiled into a jar library package. The package includes a Spring

GroundWork Open Source, Inc.; Copyright 2008
Page 7

Foundation Developer Reference

assembly file which is read by the Foundation Framework at initialization time. See the tutorial later in
this document for more details about the syntax of the assembly file, and how to deploy an Adapter.

Configuring Foundation

Description of the Foundation System
Foundation is a system of several loosely coupled components described below:

Foundation-webbapp - A core component that includes the business objects, the data persistent
component (Object Relation Mapping ORM), the data normalizer components (Foundation
adapters), and the Web Service API (Soap based API).

Foundation-JMS - The server hosting the Message Queue for incoming data feeds and a Topic
server for notification.

Foundation-reportserver - (Professional only) An application to manage BIRT reports.

birtviewer - An Eclipse application to view reports generated with Eclipse BIRT Report
Designer.

Each of the components are build as a Web Application and deployed into the servlet conatiner (Jetty).
In addition to the web applications Foundation includes the following components:

Nagios feeders — The nagios feeders read Nagios status and log files and send XML messages to

Foundation. The Nagios feeders are only used in GroundWork Monitor Community Edition
since the feeder functionality in the Professional version is handled by the Nagios Event Broker.

The feeder scripts are located in /usr/local/groundwork/foundation/feeder directory and are
named:

nagios2collage_status.pl - Reads the Nagios status log and updates the Status database
with Host and Service status information.

GroundWork Web Service plugin for Eclipse - The plugin is included in the distribution
(usr/local/groundwork/foundation/eclipse) but as well bundled with the birtviewer web
component.

Deployment of Foundation
Foundation Files and Components - /usr/local/groundwork/foundation
Web Applications - foundation/container/webapps
Context Files for Web Applications - foundatin/container/contexts

Configuration for the Jetty servlet Container - foundation/container/etc

GroundWork Open Source, Inc.; Copyright 2008
Page 8

Foundation Developer Reference

Foundation Configuration

Foundation configuration uses properties files stored in /usr/local/groundwork/config. Changing any of
these files requires a restart of gwservices as described in the table below.

db.properties Contains the database credentials for any database used by
GroundWork Monitor
foundation.properties Defines runtime configuration such as the port to listen on, location

and configuration of the JMS server and properties to tune the
application such as size of the different thread and connection
pools.

adapter.properties List of adapters (Normalizer components) used for message
processing.

gwreportserver.properties Defines the location of the reports and information about the report
viewer.

log4j.properties This file allows to change the level of log reporting for all Java
applications. By default is set to Error only. For debugging
purposes it can be set to Warning, info or debug.

Logging and Log Output

The output of the log files are defined in log4j.properties. By default all the log files for Java go to the
directory /usr/local/groundwork/foundation/container/logs.

Running Foundation

The service to start and stop Foundation is gwservice and is installed into /etc/init.d.
To start foundation issue the following command (needs root privileges):
/etc/init.d/gwservices start

and simiar to stop the service:

/etc/init.d/gwservices start

GroundWork Open Source, Inc.; Copyright 2008
Page 9

Foundation Developer Reference

Note: Caution needs to be applied when starting and stopping services since stopping foundation will
shutdown the message listeners and the API driving the User Interface screens.

GroundWork Open Source, Inc.; Copyright 2008
Page 10

Foundation Developer Reference

Data Integration Approaches

Before you Start

Before you start integrating data into the Foundation data store, you need to decide the following:

1.
2.
3.

How to collect data from the source application and how to write the Feeder.
Where the data normalization takes place (Feeder or Adapter).

Whether the default fields in the data model are enough to store your data, or whether you need
to add application specific properties.

What ApplicationType to use for your data. The ApplicationType is a parameter that allows you
to access your data using a simple filter. In GroundWork Monitor, this filter is built in to the
Console application view, and will show up automatically when data is present with the
application type in question.

. Does it make sense to bundle messages into a single transaction. Bundling would allow a higher

message throughput and submit all or nothing of depended data. It adds more complexity to the
feeder creating feeds. Foundation added support for this type of messages by defining an XML
Schema (link to file) and a new Adapter called SystemAdapter. The recent version of
Foundation uses this approach for processing Nagios Status and Event messages.

Supported Adapters

Foundation comes with a set of Adapters for different type of data feeds. The adapters can be classified
into two different types:

GroundWork Open Source, Inc.; Copyright 2008
Page 11

Foundation Developer Reference

Single Transaction messages

The adapters of this type accept XML feed of the format <ELEMENT atribute=value,.. />. Each XML
element represents a transaction. Foundation supports the following adapters.

NAGIOS <NAGIOS_LOG Events from Nagios
Events attribute,.. />

Nagios Status <SERVICE_STATUS Host and Service status updates
attributes,./>

<HOST _STATUS
attribute,../>

SNMP Trap <SNMPTRAP SNMP trap events coming from the SNMPTT
events attribute,.. /> daemon
SNMP Trap <SNMPTRAP SNMP trap events coming from the SNMPTT
events attribute,.. /> daemon

Syslog events <SYSLOG attribute,.. /> Syslog messages from the gw_syslog plugin

Generic <GENERIC_LOG Generic adapter that maps attributes directly to
Events attribute,../> dynamic properties without checking.

System <COLLAGE_LOG Reporting System messages to Console
messages attribute,../>

GroundWork Open Source, Inc.; Copyright 2008
Page 12

Foundation Developer Reference

User definable transaction messages

The preferred way to feed data is using the new SystemAdapter which allows the sending of multiple
messages of different entities (Event or Status) in a single transaction. The advantages of this approach
are:

Higher message throughput under load.

The SystemAdapter uses an XML schema to validate the feed upfront. Any synatx errors are
detected before being processed in the service layer.

View XML Schema in Firefox: SystemConfig.xsd

View XML Schema in Internet Explorer: SystemConfig.xsd

Wrapping dependent messages in a transaction. If any of the message fail everything will roll
back and guarantee data consistency.

For information on how to use and configure feeds that use the SystemAdmin adapter see example in
the document Configuring Data Feeders.

The Feeder and Generic Adapters

As mentioned in the earlier chapters, the Feeder has to produce an XML stream that can be sent to one
of Foundation's Listener services. If the Feeder performs normalization, or if the input data is simple
and matches the default data model properties, then the Feeder can send the data to the Generic
Adapter. The Generic Adapter maps the sent attributes to database properties without validating the
values.

A sample of how to feed data to the Generic Adapter can be found below under Creating a Feeder for
LOGH4J and Using the Generic Log Adapter.

Custom Properties

If you decide that your application needs more properties to be stored along with the default Status and
Event data fields, the following steps are necessary:

1. Add new properties and their type to the PropertyType table.

2. Associate the properties with the EntityType such as LOG_MESSAGE, SERVICE_STATUS, or
HOST_STATUS.

3. Define an ApplicationType for your data.

In the current version of GroundWork Foundation the above database operation needs to be executed
with SQL statements. These methods will be supported by the next update of the Admin Feeder, which
will allow dynamic addition of properties via the input stream.

GroundWork Open Source, Inc.; Copyright 2008
Page 13

http://172.28.113.225/monitor/packages/bookshelf/bookshelf-data/SystemConfig.pdf
http://172.28.113.225/monitor/packages/bookshelf/bookshelf-data/Developer_Reference/Foundation/Foundation_Overview/Developer_Reference_Foundation_Configuring_Data_Feeders.htm
javascript:void(0);

Foundation Developer Reference

Custom properties can be inserted using the Generic Adapter, but since no consistency checking is
applied, message feeds with missing properties will be rejected.

Recommendations

1. For large numbers of constant data feeds, implementation of an Adapter to validate the incoming
data (all required fields available, correct type) is recommended. This will ensure that any error
that would cause a transaction rollback (an expensive middle layer operation) can be detected up
front and rejected.

2. Feeders should be simple and as generic as possible - collect data points and send them to the
Adapter for normalization. This reduces the load of concurrently running Feeder processes,
which can be inefficient, especially when written in interpreted languages such as Perl.

3. Use the SystemAdapter whenever possible. The performance improvements and the improved
message validation make the system much more robust.

GroundWork Open Source, Inc.; Copyright 2008
Page 14

Foundation Developer Reference

Configuring Data Feeders

The following section describes configuring the system for custom data integration and the steps
necessary to setup and configure data feeds into GroundWork Monitor for status and event monitoring.

Scenario

An application, let's call it TemperatureWatcher, monitors 10 temperature sensors in different rooms of
a building. At startup and shutdown the TemperatureWatcher applications sends events. In normal
operations every 30 seconds the temperature of each sensor is sent to GroundWork Monitor.

Additionally, the TemperatureWatcher checks the status of the sensors. If the status is different from an
OK status and the sensors do not respond an event is sent to GroundWork Monitor.

The Events generated by TemperatureWatcher should be visible in the Event Console while the
temperature of each sensor should be visible in the Status application.

Setup and Configuration
Given the above specifications the following meta data needs to be generated in Foundation:
« ApplicationType: TempWatcher

+ Custom Property for Status information: Temperature of type Double - This is the field
where the temperature measurements are stored.

« Host Group: TemperatureWatcherApps - The HostGroup needs to be created so that the
Temperature Watcher applications are visible in Status.

Insert Metadata

The easiest way to insert the metadata into Foundation is to stop Foundation, update SQL and restart
Foundation.

1. Stop Foundation from the command line logged in as root:
/etc/init.d/gwservices stop

2. Update SQL data into the database:
mysql -uroot GWCollageDB

mysql>INSERT INTO ApplicationType(ApplicationTypelD, Name, Description,
StateTransitionCriteria) VALUES (200,"TEMPWATCHER", "System monitored by
TemperatureWatcher", "Device;Host;ServiceDescription");

GroundWork Open Source, Inc.; Copyright 2008
Page 15

Foundation Developer Reference

mysqI>INSERT INTO PropertyType(Name, Description, isDouble) VALUES ("Temperature”, "", 1);
3. Restart Foundation:
/etc/init.d/gwservices start

Configuration Data for the Application, Checks and Hostgroup are XML feeds to the TCP port 4913
using the SystemAdmin adapter for Data Normalization. The following Feed creates the necessary
entries so that the system can accept monitoring data from the TemperatureWatcher application:

<Adapter Session="1" AdapterType="SystemAdmin">

<Command Action="ADD' ApplicationType="TEMPWATCHER">
<Host Host="Temp-Watcher-1' Description="Temperature Watcher'
Device="TemperatureWatcher' DisplayName="TemperatureWatcher' />

</Command>

<Command Action="ADD' ApplicationType="TEMPWATCHER">
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_1'
CheckType='"PASSIVE' StateType='SOFT' MonitorStatus="PENDING'
LastHardState="PENDING' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_2'
CheckType="PASSIVE' StateType='SOFT' MonitorStatus="PENDING'
LastHardState="PENDING' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_3'
CheckType="PASSIVE' StateType='SOFT' MonitorStatus="PENDING'
LastHardState="PENDING' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_4'
CheckType="PASSIVE' StateType='SOFT' MonitorStatus=PENDING'
LastHardState="PENDING' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_5'
CheckType="PASSIVE' StateType='SOFT' MonitorStatus="PENDING'
LastHardState="PENDING' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_6'
CheckType="PASSIVE' StateType='SOFT' MonitorStatus="PENDING'
LastHardState="PENDING' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_7'
CheckType="PASSIVE' StateType='SOFT' MonitorStatus="PENDING'
LastHardState="PENDING' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_8'
CheckType="PASSIVE' StateType='SOFT' MonitorStatus=PENDING'
LastHardState="PENDING' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_9'
CheckType='"PASSIVE' StateType='"SOFT' MonitorStatus="PENDING'
LastHardState="PENDING' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_10'
CheckType="PASSIVE' StateType='SOFT' MonitorStatus="PENDING'
LastHardState="PENDING' />

GroundWork Open Source, Inc.; Copyright 2008
Page 16

Foundation Developer Reference

</Command>

<Command Action="ADD' ApplicationType="TEMPWATCHER ">
<HostGroup HostGroup="TemperatureWatcherApps' />

</Command>

<Command Action="MODIFY" ApplicationType="TEMPWATCHER">
<HostGroup HostGroup="Temperature WatcherApps' >
<Host Host="Temp-Watcher-1' />
</HostGroup>

</Command>

</Adapter>

Feeding Data

Any data (Status and Events) will be sent to the SystemAdmin adapter since the data
normalization is done by the feeder application.

Sending an event will use the following XML feed send to the TCP port 4913. The example
reports a FATAL error on the sensor_1 check:

<Adapter Session='8"' AdapterType='SystemAdmin'>
<Command Action="ADD' ApplicationType="TEMPWATCHER ">
<LogMessage MonitorServerName="localhost'
Device="TemperatureWatcher' ServiceDescription='sensor_1'
TextMessage="'Sensor is not reponsing — failed to get temperature'
ReportDate="2008-01-23 01:45:26' Severity="FATAL'
MonitorStatus="FAILED' ErrorType='"SERVICE ALERT'
Host="Temp-Watcher-1' />
</Command>
</Adapter>
For best performance the status of all the 10 sensors should be sent as one message to Foundation:

<Adapter Session="1" AdapterType="SystemAdmin">
<Command Action="MODIFY" ApplicationType="TEMPWATCHER">

<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_1'
MonitorStatus='OK' Temperature="76.3"' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_2'
MonitorStatus="WARNING' Temperature='88" />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_3'
MonitorStatus='OK' Temperature='43' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_4'
MonitorStatus='OK' Temperature='67"' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_5'

GroundWork Open Source, Inc.; Copyright 2008
Page 17

Foundation Developer Reference

MonitorStatus='"OK' Temperature="76.3" />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_6'
MonitorStatus='OK' Temperature='66" />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_7'
MonitorStatus='"OK' Temperature='52.3' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_8'
MonitorStatus='"OK' Temperature='50" />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_9'
MonitorStatus="WARNING' Temperature='93' />
<Service Host="Temp-Watcher-1' ServiceDescription='Sensor_10'
MonitorStatus='OK' Temperature='66.3' />
</Command>
</Adapter>

With this configuration Status Data is visible in Status under the HostGroup TempWatcherApp and all
Events are visible in the Event Console.

GroundWork Open Source, Inc.; Copyright 2008
Page 18

Foundation Developer Reference

Configuring Consolidation

How It Works

The Foundation consolidation feature allows to reduce the number of LogMessages by creating just
one entry for messages that are alike, incrementing the Message counter, and adjusting the date fields.
Consolidation processing is applied to all incoming messages of Entity Type LogMessage where the
attribute consolidation is defined (e.g. consolidation="SNMPTRAP".

Consolidation criteria are stored in the Database and consist of a user definable name and the criteria.
The criteria is a semicolon (;) separated list of LogMessage record fields or PropertyNames. For an
incoming message to be consolidated, all values of the fields defined in the criteria have to match an
existing record.

An incoming message must define the Name of the Consolidation criteria that it will be matched
against. If the consolidation tag is missing, a new log entry is created, which is the system's default
behavior.

Default Consolidation

By default, the Consolidation is turned on for Nagios, SNMP, and Syslog event processing.
Consolidation will occur if the fields defined in the consolidation criteria match. An exception to the
above is if the Monitoring Status of the last event is different than the Monitoring Status of the
incoming event, a new Console message will be created. This rule guarantees that console messages
sorted by chronological order will always show the current status above previous status. The following
Consolidation criteria are defined in Foundation's ConsolidationCriteria table:

NAGIOSEVENT nagios2collage_eventlog.pl Community Edition
NAGIOSEVENT EventBroker Professional Edition
SNMPTRAP snmptt forwarding traps to Foundation Professional only
SYSLOG gw-syslog-feeder.pl Professional only

GroundWork Open Source, Inc.; Copyright 2008
Page 19

Foundation Developer Reference

Disable Consolidation

To disable consolidation for the Feeders shipped with GroundWork Monitor Community Edition, you
can modify the Nagios event log feeder, nagios2collage_eventlog.pl, to send a message to Foundation
that does not specify consolidation. Change the script that contains the following line:

my $xml_message = "< NAGIOS_LOG consolidation="NAGIOSEVENT""; # Start message tag.
Consolidation is ON

To the following:
my $xml_message = "< NAGIOS_LOG "; # Start message tag. Consolidation is now turned OFF

Example

To enable consolidation, the event message needs to look like the following, followed by the other
arguments:

<NAGIOS_LOG consolidation="NAGIOSEVENT"
The Consolidation Criteria in the database for NAGIOSEVENT defines the following criteria:
Device;MonitorStatus;OperationStatus;SubComponent;ErrorType

If an event is fed to the system and the consolidation criteria is defined, the system checks if any log
message for the Device, MonitorStatus, OperationStatus, SubComponent and ErrorType already exists.
The system will only consolidate if:

Just one LogMessage object matches.

If multiple LogMessage objects match a warning is logged indicating that the criteria needs to
be better defined.

If a match is found an existing message the message counter LogMessage.MsgCount for an existing
message will incremented and the date fields will be updated as following:

FirstInsertDate unchanged
LastInsertDate ReportDate
ReportDate System (current time)

TextMessage Updated Text message. Text Message might include the values of a check
(85% disk used) that changes while the status and the type remain the same.

GroundWork Open Source, Inc.; Copyright 2008
Page 20

Foundation Developer Reference

GroundWork Foundation Data Objects and Attributes

Note: The attributes listed below are Nagios specific and apply to the application type Nagios. The
Nagios Adpaters (Nagios_log (Events), Host_Status Service_Status) check for the existence of the
following attributes.

Host Groups, Device, and Monitoring Server attributes are processed by the SystemAdmin adapter.

Foundation's data store has a flexible data format that can be expanded if needed. The Foundation data
objects and attributes implemented in the Foundation package that are applicable to a Nagios-centric
are listed below.

Host Status Attributes
MonitorStatus
LastCheckTime
LastStateChange
isAcknowledged
TimeUp
TimeDown
TimeUnreachable
LastNotificationTime
CurrentNotificationNumber
isNotificationsEnabled
isEventHandlersEnabled
1sChecksEnabled
isFlapDetectionEnabled
isHostIsFlapping
PercentStateChange
ScheduledDowntimeDepth
isFailurePredictionEnabled
isProcessPerformanceData

LastPluginOutput

GroundWork Open Source, Inc.; Copyright 2008
Page 21

Foundation Developer Reference

Service Status Attributes
Host
MonitorStatus
RetryNumber
StateType
LastCheckTime
NextCheckTime
CheckType
isChecksEnabled
isAcceptPassiveChecks
isEventHandlersEnabled
LastStateChange
isProblemAcknowledged
LastHardState
TimeOK
TimeUnknown
TimeWarning
TimeCeritical
LastNotificationTime
CurrentNotificationNumber
isNotificationsEnabled
Latency
ExecutionTime
isFlapDetectionEnabled
isServiceFlapping
PercentStateChange
ScheduledDowntimeDepth
isProcessPerformanceData

1sObsessOverService

GroundWork Open Source, Inc.; Copyright 2008
Page 22

Foundation Developer Reference

Event - Host or Service Alert

Host
ServiceDescription
Severity
HostStatus
ServiceStatus
TextMessage
ReportDate
LastInsertDate
FirstInsertDate
SubComponent

ErrorType

Event - Host or Service Notification

Host
ServiceDescription
Severity
HostStatus
ServiceStatus
TextMessage
ReportDate
LastInsertDate
FirstInsertDate
SubComponent
ErrorType
LoggerName

Host Groups

Name

Description

GroundWork Open Source, Inc.; Copyright 2008

Page 23

Foundation Developer Reference

Device
DisplayName
Description

Identification

Monitoring Server
MonitorServerName
1P

Description

Web Service API

Foundation Web Service

Adding a Web Service layer enables more applications to use and integrate with the existing Foundation
Framework. The Web Service API uses SOAP (Simple Object Access Protocol) as the communication
protocol. Since Web Services are a well defined and a widely used standard other technologies such

as .NET or popular development tools such as Visual Studio or Java Studio Creator can be used to
create Ul or business components on the top of the Foundation platform.

The Web Services framework is able to scale and distribute the API more easily, than the previous API,
which results in higher throughput and therefore better overall performance of large installations. The
Advanced Reporting feature uses the Foundation Web Service API to access data stored in the
Foundation persistent store.

WSDL

Web Service Description Language for GroundWork can be consumed by applications to view and
retrieve data from the endpoint (Foundation).

Foundation Web Service Model
Defines the basic types and objects used by the Foundation Web Service.

fwsmodel.wsdl (Firefox)

fwsmodel.wsdl (Internet Explorer)

GroundWork Open Source, Inc.; Copyright 2008
Page 24

javascript:void(0);
http://172.28.113.225/monitor/packages/bookshelf/bookshelf-data/fwsmodel.pdf

Foundation Developer Reference

Foundation Event WS
A Web Service used to retrieve Event Messages stored in Foundation.
« fwsevent.wsdl (Firefox)

+ fwsevent.wsdl (Internet Explorer)

Foundation Common Web Service

Web Service used to retrieve metadata and access to the Actions Framework.

« fwscommon.wsdl (Firefox)

+ fwscommon.wsdl (Internet Explorer)

The following Web Services allow to query for data about a specific Entity Type:
+ Device

« fwsdevice.wsdl (Firefox)

- fwsdevice.wsdl (Internet Explorer)

« Host

« fwshost.wsdl (Firefox)

- fwshost.wsdl (Internet Explorer)
+ HostGroup

+ fwshostgroup.wsdl (Firefox)

- fwshostgroup.wsdl (Internet Explorer)

. Service

+ fwsservice.wsdl (Firefox)

- fwsservice.wsdl (Internet Explorer)

- Statistics

- fwsstatistics.wsdl (Firefox)

- fwsstatistics.wsdl (Internet Explorer)

GroundWork Open Source, Inc.; Copyright 2008
Page 25

javascript:void(0);
http://172.28.113.225/monitor/packages/bookshelf/bookshelf-data/fwsstatistics.pdf
javascript:void(0);
http://172.28.113.225/monitor/packages/bookshelf/bookshelf-data/fwsservice.pdf
javascript:void(0);
http://172.28.113.225/monitor/packages/bookshelf/bookshelf-data/fwshostgroup.pdf
javascript:void(0);
http://172.28.113.225/monitor/packages/bookshelf/bookshelf-data/fwshost.pdf
javascript:void(0);
http://172.28.113.225/monitor/packages/bookshelf/bookshelf-data/fwsdevice.pdf
javascript:void(0);
http://172.28.113.225/monitor/packages/bookshelf/bookshelf-data/fwscommon.pdf
http://172.28.113.225/monitor/packages/bookshelf/bookshelf-data/GroundWork_Monitor_Applications/EVENT_CONSOLE/Console_Applying_Actions.htm
javascript:void(0);
http://172.28.113.225/monitor/packages/bookshelf/bookshelf-data/fwsevent.pdf

	Foundation Overview
	What It Does
	Deployment of Foundation
	Related Applications
	Storing Nagios Data in Foundation

	Foundation Architecture and Data Flow
	Architecture
	Data Flow

	Component Details
	Feeder
	Foundation Listener
	Adapters

	Configuring Foundation
	Description of the Foundation System
	Deployment of Foundation
	Foundation Configuration
	Logging and Log Output
	Running Foundation

	Data Integration Approaches
	Before you Start
	Supported Adapters
	Single Transaction messages
	User definable transaction messages
	The Feeder and Generic Adapters
	Custom Properties
	Recommendations

	Configuring Data Feeders
	Scenario
	Setup and Configuration
	Insert Metadata
	Feeding Data

	Configuring Consolidation
	How It Works
	Default Consolidation
	Disable Consolidation
	Example
	Host Status Attributes
	Service Status Attributes
	Event - Host or Service Alert
	Event - Host or Service Notification
	Host Groups
	Device
	Monitoring Server

	Web Service API
	Foundation Web Service
	WSDL
	Foundation Web Service Model
	Foundation Event WS
	Foundation Common Web Service

